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A semiclassical theory of the excitation by light of crystalline quasiparticles coupled “in-
directly” to light via an intermediate field is presented and illustrated via a model photon-
exciton-phonon system. The resonance behavior of the excitation efficiency is investigated
for various values of the couplings, and dependences on boundary conditions and damping ef- -
fects are illustrated. Sharply resonant behavior results for sufficiently strong couplings and
small enough damping, suggesting the possibility of applications of “indirect” excitation by
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light in actual devices, as well as in the study of microscopic properties of materials.

I. INTRODUCTION

Many of the quasiparticle fields in crystals, such
as the LO- and acoustic-phonon fields, ! do not
couple directly to the photon (radiation) field. Also,
even for those fields which do, in general, couple
to photons (e.g., TO phonons?’s %, the coupling con-
stants often vanish in particular cases—for example,
for symmetry reasons.® Since today’s lasers pro-
vide us with a tunable source of intense mono-
chromatic light, special interest attaches to whether
such “inactive” modes (i.e., not coupled directly
to light) may nevertheless be excited “indirectly”
by an external light source. The latter is clearly
possible, in principle, whenever light couples to
some intermediate field, which in turn couples to
the light-inactive field. Moreover, such excitation
can be resonant whenever the dispersions of both
pairs of fields (light-intermediate and intermediate -
inactive) cross within a single narrow frequency
region (roughly of width less than the smaller of the
two coupling constants for the pairs). Equivalently,
the dispersion of the composite field formed by the
interaction of light with the intermediate field needs
to cross the inactive field dispersion to lead to
resonant behavior. It is the purpose of the present
paper to study resonance excitation by light in such
situations.

We point out some examples of systems where
“indirect” excitation by photons may be of interest.
(We will here always employ the terms “direct”
and “indirect” with reference to the microscopic
interactions between the uncoupled fields of the
system. )

(a) In the presence of a magnetic field, micro-
wave radiation incident on a metal forms a propa-
gating composite quasiparticle called a helicon. % ®
Although the externally incident microwaves do not
couple directly to phonons, the mediation of the
electron-phonon interaction provides a mechanism
by which sound may be excited in this system.®

(b) Again, mediation by the electron-phonon in-
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teraction may allow excitation of LO phonons in
semiconductors by an external light source. A
possible mechanism is the excitation by the inci-
dent light of plasmons, ® which in turn couple to the
LO phonons.

(c) Should either the magnon’ or phonon field in
an insulator be light inactive, it might nevertheless
be excitable whenever the magnon-phonon interac-
tion acts in conjunction with either a phonon-photon?
or magnon-photon® interaction, respectively.

(d) In narrow-gap semiconductors phonons might
be excited via various intermediates. The presence
of excitons and the exciton-phonon interaction®
should allow for excitation of acoustic or optical
phonons. Interaction of light with free carriers can
excite plasmons® which may, in turn, excite LO
phonons.

All the above-described systems are similar in
that three fields are involved: external radiation,
an intermediate field, and an “indirectly” coupled
field which one desires to excite. Rather than con-
cern ourselves with the abundant details surround-
ing such systems, we wish here to investigate just
a single simplified model of such a system: one
consisting of photons, excitons, and acoustic pho-
nons, where the exciton and phonon dispersions
cross. Such a situation is realizable, in principle,
in a narrow-gap semiconductor. The main ad-
vantage of the present system is, however, that it
is on the whole free of unessential complications
yet general enough to encompass the principal
physical and mathematical considerations involved
in treating the indirect-excitation-resonance prob-
lem.

We note that although it has been demonstrated
that excitons may, in principle, exist in such
materials, ! their positive identification seems to
have been thwarted by the presence of high concen-
trations of intrinsic and/or extrinsic carriers which
tend to screen out electron-hole interactions.!!

As such, the particular process of photon-induced
excitation of phonons in the model system chosen
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here may not yet be an experimentally feasible one.
To describe the present resonance system the-
oretically, we adopt polariton (composite-quasi-
particle) theory, '2 an approach which is especially
useful in the immediate dispersion cross-over
region, where conventional perturbation theory
breaks down. We employ the term “polariton”
to refer to the coupled modes of the present inter-
acting system. In our development, we formulate
classical field equations and obtain the energy den-
sity, in analogy with the Born-Huang (BH) treatment
of the TO-phonon-light problem.? We then identify
the fraction of acoustic-phonon energy associated
with a given polariton mode, and define an efficiency
function C for sound excitation. After specifying
the boundary conditions (b. c.) on the phonons, !* we
evaluate C explicitly, illustrate its frequency de-
pendence for various values of the system param-
eters, and discuss the results.

II. FIELD EQUATIONS, ENERGY DENSITY, AND POLARITON
DISPERSIONS

We consider an acoustic-phonon field (V_’), exciton
field (W), and transverse electric field (§), with
natural frequencies w,, E, and kc, respectively.
Let B denote the polarization field, 3 the magnetic
field, y the phonon-exciton bilinear coupling function,
b s, the background dielectric susceptibility
[= (5 -~ 1)/47, where ¢, is the background dielectric
constant], and b,, the photon-exciton bilinear cou-
pling. We set up field equations? for the K-space
Fourier components of the fields; in analogy with
BH these take the form

V= ~w§V+yW; ﬁ= —E2W+b12§+y\7 ;
B=b,,W+bpd; K- (§+47P)=0; K-%=0; (1)
iKx &= —c‘lﬁ:é; ik’XJ_(?=c'1(<—‘;’.+41r§) .
In analogy with BH, we choose for the energy den-
sity,
U=3(V2+ 02V =9V W+ (W2+E2W?) -, W+ &
40 82+ 8- DP+(82+35¢)/87 . (2)
This choice implies

au - ﬁ* N d[(82+3¢3)/87]

dt dt ’ ®

which may be interpreted similarly to BH: The
rate of change of energy density equals the Joule
heating plus the rate of change of electromagnetic
field energy density.

Employing Egs. (1) and (2) we may express U as

U=4(V3+w2Vd —yV+ W+ 2(W2+ E2W?)

N

+(e, 82433 /87 . (4)
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Specializing to harmonic fields with time variation
e~'“* we now take U to refer to the time-averaged
energy density. With this redefinition, and allow-
ing the various field variables to refer to their
time -independent amplitudes, one obtains the
transverse-mode? density U from Egs. (1) and

(4) as

_ 82 ([Ez—yz(wg—sz)/(wg—wz)z] anb2, +€)
T 4n (B%-w?—v¥/(wg - w)]? °)

U
(5)

This result reduces to a form similar to Loudon’s'*
for the case y=0. The relations between fields
employed in obtaining Eq. (5) are

_ YW _ b1 8
T (wi-wd)’ W_[Ez-wz—;’%/(wg—wzﬂ - ©

The polariton eigenvalue equation following from
(1) is

4

k%2
o2

47bea .
E® - w?—y*/(wE - w%)] ’

ek, w)= =6+T

(7

where € is the dielectric function. To calculate the
polariton dispersion explicitly, one must specify
the & dependence of v, E, and w,. For large ef-
fective mass, E is nearly independent of 2 for a
large range in k: This approximation is adequate
for our purposes. We assume that the phonon fre-
quency w, is linear in % in the region of interest
here (wy=0 ;&) and take y constant in this region. '’
We note that the present eigenvalue equation then
becomes a quadratic in k2, and that the two solutions
of absolute value k; and &, specify the two degen-
erate polariton modes at any frequency w. The
polariton dispersions arising from Eq. (7) are il-
lustrated for typical parameters in Fig. 1.

III. PHONON-EXCITATION EFFICIENCY

In a resonantly coupled system there is no unique
unambiguous way to divide up and classify the en-
ergy according to the noninteracting fields of the
system.!® Strictly speaking, an expression for U
and relations between fields [for example, such as
in Egs. (1) and (2)] represent a complete descrip-
tion of the interacting system. Thus, the classifi-
cation of the energy according to the noninteracting
fields is carried out primarily for purposes of in-
terpretation. For such a division to be useful the
portions identified in the present problem as pho-
ton, exciton, or phonon must conform to various
requirements consistent with the physical properties
characterizing these fields. The exact nature of
these requirements will be made evident in the
development which follows.

Let us first consider a simplified problem of an
interacting phonon-exciton system described by
density
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FIG. 1. Polariton dispersion re-
lation for A;=0.4, B;=0.36 (cf. Ref.
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ing. The polariton dispersion for real
k is given by the solid lines; the dis-

— persion for pure imaginary values of
absolute value % is given by dotted
lines. The dashed lines indicate the

4 three noninteracting dispersions de-
scribed in the text.

2 3 4 5 6
|og10 POLARITON WAVE VECTOR kc/E

U=5V23+w2V? —yV - W+3(W2+E2W?) . (8)

It will be most useful for our purposes to introduce
the quantum Hamiltonian H corresponding to U,
which may be shown to be'” (7=1)

H=2¢{wy(k)atai + [(v/ 205’ *E' *)at b’z ~at b))
+H.c.]+Ebbi}, (9)

where ¢* and b* are creation-annihilation operators
for phonons and excitons, respectivity, and H.c.
indicates Hermitian conjugate. One can show that
the ith polariton operator Aj is a linear combination

of a’s and b’s of the form!? 18
Afg=cyiai+cybi+dyali+dy b, (10)
where
c1;= @) (wE - W) (E +w;) (4Ew,; b,)* 2,
o=~ (1) 'y (wy +w) (4w, we by ?, (11)

b= (w§ ~wi)?+¥?,
dy; is obtained by replacing E + w; in ¢y, by
-(E - w,), and dy; by replacing w, +w; in c,; by
wp—w;. w; and w, are the two polariton frequencies
at a given k, and w3=—w;, wy=—w,. The linear
transformation described by Egqs. (10) and (11) sug-
gests the definition of a probability of phonon
creation via A} as g;=lcy;1% - 1 dy;| % (where |c 12
represents phonon creation and |d |2 phonon de-
struction), and an analogous exciton probability as
gi=lcg B= |dy! % then

8i=7%b;, gi=(w§-w})/b,; . (12)

We will employ the notation g; interchangeably to
refer to either fixed & [which then determines a
set of w;(£)’s] or at fixed w [which then determines
a set of %,(w)’s]. In support of the interpretation!®
given here to the g’s, we note that for either fixed
k or w the following properties hold: (i) gy,

gi<1; g;+g1=1. (ii) At bothw <E and w> E,
where the polariton dispersion is very nearly pho-
nonlike, g;~1, gi~0. For w-E, where the dis-
persion becomes very nearly excitonlike, g;~0,
gi~1.

For a given mode i we then identify the portion of
energy associated with phonons as U, =gU and with
excitons as U,=g'U. As a function of frequency w,
the energy is thus entirely of phonon character for
w < E, becoming entirely excitonlike for w - E, and
reverting again to pure phonon for w>E.

We may now inquire as to what division of U cor-
responds to the present choices for the g’s. Con-
sider the simplest conceivable division, namely,
splitting the interaction energy -V w equally
between the noninteracting fields; i.e.,

Ur=5V3+ w2V -5V - W,
: - (13)
U,=3(W2+E2W?) -5 V- W .
One easily shows that these choices for U; and U,
satisfy

U,/U=g, U,/U=g". (14)

Thus it is an equal division of the interaction energy
between the two fields which corresponds to the in-
terpretation of the g’s following from the quantum-
transformation coefficients introduced in Egs. (10)
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FIG. 2. Phonon fractions g; vs w/E for parameters of
Fig. 1. The indices 1, 2, refer to the curves in Fig. 1,
the solid line for 1 and the dashed line for 2.

and (11).

While the problem of an external ¢''m field in-
teracting with just a single other field may be
formulated in a nearly analogous fashion, the three-
field problem involves various complications in the
quantum formulation not present in the above ex-

ample (proper sum rules need be obeyed to correctly

determine the coefficient of the A2 term in the vec-
tor potential). We therefore do not attempt a quan-
tum formulation for the present three-field prob-
lem. Rather, we note that the quantity of principal
concern here is just the fraction of phonon energy
in a system mode. The fact that the phonon is here
coupled directly to just the exciton field alone sug-
gests the identical division of the interaction energy
-9V + W as in the absence of the ¢''m field. Again,
such an identification is useful only if the results
conform to the sort of requirements satisfied above
in the two-field case. With the proposed division
one finds for g,(w)

g1=5[V3+ i @)VE -9V W]= plwn) D+ @),
M= 47’bf2 El;l )

(15)
D, = (E? - w9 [wf(i) - w?] -2,
Q= L {EFwil) - w¥? - v2[wd(i) - w?]+y2 0,

where the notation w,(i) indicates that we determine
B, =Fk,;(w) in evaluating wy. One easily verifies from
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(15) that, as necessary, g;<1; for i=1 and w <E,
where the polariton dispersion becomes photonlike
(see Fig. 1), g,~0, while for i =2, where the dis-
persion becomes phononlike, g,~1. For w-E,
curve 2 becomes nearly excitonlike and g,~ 0.
Immediately above w=E, curve 2 again takes on
some phonon character and g, increases corre-
spondingly. For w> E, polariton 2 eventually be-
comes purely photonlike and g,~0. In the same
region polariton 1 becomes purely phononlike, so
that gy~ 1. These properties justify the choice of
(15) for g as physically appropriate. The various
properties discussed are illustrated for the cross-
over region, in Fig. 2 (for the same parameters
as in Fig. 1), which demonstrates the frequency
dependence of gy and g, in this region. Although
not specifically of interest here, one can show,
employing arguments similar to the above, that the
exciton-energy fraction g’ and the e''m fraction
g'' take the forms

&' =Dyl3p(wf - 0?) +D,1(DF + @) 7 16)

= 3u(w - wI[(E2+ w) (Wi - w?) -v3 (DF+Q) ™ .

These functions have properties exactly analogous
to those of g.

To describe externally induced excitations in a
multimode system such as the present one, we
need, in addition to the fractions g, the probabilities
with which each polariton is excited at the bound-
ary.'® We define probabilities p, , that an incident
photon excites polariton 1, 2; if we for the moment
disregard the reflectivity, and normalize p, +p,y=1,
then the total phonon, or sound, energy fraction
may be defined as

Fw)=p1(w)g() +plw)g(2) , (17)

where 1 and 2 in the argument of g indicate evalua-
tion at 2, and k,, respectively. Incorporating the
reflectivity R(w), we may define the efficiency for
sound excitation by an externally incident photon
as

1

Cw)=[1-R(w)]F(w) . (18)

C is interpreted as the fraction of incident photon
energy which is transformed into sound energy at
the crystal boundary.

To obtain F or C explicitly we must specify the
relation between p; and p,, which follows once the
b. c. !4 on the phonons are specified for a given
geometry. For normal incidence in a semiinfinite
medium, a simple but reasonable b.c. is vanishing
stress at the boundary.?® If z is the coordinate
normal to the surface, then we require

(22) +(32) o (19)

Note that this b. c. specifies R(w) uniquely as well.
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1.00 T T T T T T 20 ,y(on)—I/zEyl=DV‘I)/Z(WwOagaZ)—I/Z’
- (22)
90} /\ 18 ﬁ=(e/m)2llap(€ba(s)) 1/2 ’
/' \ where D is a deformation potential and P a momen-
] '\ 16 tum matrix element between Bloch states of the

crystal; ay is the exciton Bohr radius and g the lat-
tice constant; various other standard symbols ap-
pearing in (22) are defined in Ref. 21.
The functions F, C, and R are illustrated in
Fig. 3 for values of the parameters indicated. %
In the zero-damping model as presented above,
the reflectivity is nearly perfect in the region im-
mediately above w=E so that C nearly vanishes in
this region. Because of the dissimilar variations
of F and 1 -R, the maximum in C is more strongly
peaked, but smaller in height, than the maximum
in F. Also, note that one obtains for C a doubly
peaked structure as a function of w, with a lower
broader peak on the low-energy side of w=E.
Figures 4-6 indicate the frequency dependence
of C upon variation of y, B, and €,, respectively.
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FIG. 3. Sound fraction F, sound efficiency C, and any of the three parameters, as is to be expected.

reflectivity R vs w/E for parameters of Fig. 1. Solid We will now consider two other factors relevant

line: R; dashed line: C; dash-dot line: F. to the computations, namely, the effect of bound-
ary conditions, and the effects of damping (dissipa-

tion).2

Incorporating (19), one obtains for F and R (sup-
pressing w for notational simplicity)

F=g(1)+[g(2) -g)]1 A1 +p1 /b2,

20
_| 1 =1) + (ny - 1)(8/8,) |? (20) a6}
(n1 +1)+(ng+1)(83/81) ’
where 4
2

&zgﬁ D} é‘ . ﬁa=_22£1 12k

b2 &1) Di|8,1 7 61 Dinp’ .

It
ni=kjcw™ . (21) g o
For other geometries, or under otherwise more E ok

general conditions, one may derive suitably mod- §

ified expressions.

A

Because polariton 2 is totally damped for 08 \
E <w <w,;, we adopt the convention p,=0 for this \
region. In fact, for the present case of zero damp- 04 \

ing the exact value of p, has a negligible effect on
the value of C in this region since 1 -R is very

nearly zero throughout. 2e

|
|
¥
by
by
by
|
L

IV. BEHAVIOR OF SOUND EXCITATION EFFICIENCY 0 ! I !
80 90 1.00 110 1.20 130 140

We proceed to illustrate the frequency dependence
of C for various values of the parameters of the
=9 12 ppl/2
theory, namely, Vs B(__Z" E*"®byy), and €,. For phonon-exciton coupling B (see Ref. 22). Solid line: B
an =1 hydrogenic exzflﬁlton level, for example, y =By; dashed line: B=0.25B,; all other parameters as in
and B are of the form® (7=1) Fig. 1. Sub-1 indicates Fig. 1 values.
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FIG. 4. Dependence of sound efficiency C vs w/E on
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all other parameters as in Fig. 1. To avoid clutter in parameters as in Fig. 1.

the figure we omit nearly vertical portions of the curves,
indicating them instead by arrows.

In this case the total displacement is made to
vanish at the surface® and one obtains the results

The b.c. employed in obtaining Figs 2-6, as indicated in Fig. 7. One observes from the figure
given by Eq. (19), is appropriate to a free surface that the “clamped” case leads to a higher maximum
and for waves normal to the surface. To investigate in C; in addition, a subsidiary peak in F and C ap-
the effect of a change in b.c., we consider the pears on the low-energy side of w=E.
hypothetical case of a totally “clamped” surface. The theory we have presented can be modified

25 T T T T

Fig. 7. Sound fraction F vs
w/E for various b.c. Solid line:
(Vy+Vy)y=0; dashed line:

.(8V;/0z +8V,/8z), = 0; all param-

eters are as in Fig. 1. The dotted
portion of the curves indicates the
region where & is pure imaginary.
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FIG. 8. Dependence of sound efficiency C vs w/E on
damping T'/E for various values of parameters. Solid
line: A=0.54,, T/E=10"3; dashed line: T'/E=10"% dash-
dot line: A=0.14,, I/E=10"3; all parameters not spec-
ified are the same as those in Fig. 1.

to include damping effects by incorporating ap-
propriate damping terms in Eq. (20). Let us con-
sider the effects of damping very generally without
distinguishing between the different types® relating
to exciton and phonon motion. For the latter case,
damping may be included consistently?* into the sys-
tem equations of motion if w is everywhere replaced
by w—-w+:iI', where I' is an appropriate average
damping constant (we neglect the real energy shifts
of w, and E which also arise). Carrying out this
approximate procedure, which is valid for I' < wy,
E, one obtains a rounding out of the peaks in
C(w), as would be expected in a damped system;
typical results are illustrated in Fig. 8. The
presence of large I' could entirely wash out the
double peak; however, the approximate theory
described here is not reliable under such condi-
tions, and a more rigorous calculation becomes
necessary to obtain an accurate prediction. We
emphasize also that the results for C illustrated
in Fig. 8 refer to the efficiency at the exciting
boundary of the crystal. At any point within the
material the spatial damping of each wave with
coefficient o Im[n; ,(w)] need be incorporated to
correctly obtain C. This may be done by straight-
forward generalization of certain well-known
existing techniques. %

We have not discussed variations in U because,
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with U,/c ~10° these have very little effect on the
nature of the above results.

V. DISCUSSION

We have here presented a theory of excitation of
sound by light which proceeds in the model adopted
here via a combination of exciton-phonon and pho-
ton-exciton interactions such as may occur in nar-
row-gap semiconductors. Of special interest is
the possibility of exciting a narrow band of high-
frequency sound in a material by use of an ap-
propriate laser source. The intensity as well as
the frequency could be modulated directly by tuning
the laser. The selective interchange of light en-
ergy to sound possible in such systems could con-
ceivably be of eventual use in applications such as
communications. Assuming the carrier density
could be sufficiently diminished then in the particu-
lar case of the narrow-gap semiconductor varying
the energy gap?® by varying the pressure and tem-
perature, say, could provide a method of varying
the resonant frequency range of the semiconductor.

Our development indicates that the frequency de-
pendence of C depends sensitively on the various
microscopic coupling parameters characterizing the
particular system under observation. A study of
observed C values could thus provide information
about the values of these parameters. Another
way in which the measured values of C could be
of use is in determining the nature of the micro-
scopic boundary conditions appropriate for various
processes. For example, “clamped’ as opposed
to “free” surface b.c.’s lead to certain qualitatively
different behavior in C (see Fig. 7).

We summarize the various general properties
revealed by the calculations which are expected to
hold as well in other similar systems. In the ab-
sence of damping, if the derivative of the amplitude
of the inactive field vanishes at the boundary sur-
face, then the inactive-field fraction excited (F)
peaks in the crossover frequency region. Corre-
spondingly, the excitation efficiency (C) peaks
doubly in the region, leaving a deep valley in the
“reflection gap.” The higher-energy peak domi-
nates, except at low values of background dielectric
constant. Higher photon-intermediate field and
intermediate-inactive field couplings and lower
background dielectric constant tend to broaden the
resonance. The latter two variations substantially
increase the maximum efficiency, while the first
has a less pronounced effect. Increasing the damp-
ing from zero to finite values tends to eliminate the
deep valley between the peaks in C; as damping
increases the peaks round out more smoothly. All
of the above features hold as well if the b.c. is
changed to correspond to the inactive-field ampli -
tude vanishing at the boundary, except that an ad-
ditional low broad maximum appears on the lower-
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energy side of the resonance in F and C.

For values of parameters appropriate to the
specific problem at hand, the maximum in F or C
is in the range of 10-20%. When damping is
present one must also take into account the losses
in amplitude as the excitations propagate through
the material, ®

We note an important relationship between C and
R from an experimental point of view: The mea-
sured value of R provides information towards an
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expérimental check or an actual determination of
the value of p,/p,. (Of course, R alone does not
determine p,/p, uniquely except in special circum-
stances, such as when 8,/8, and the #; are pure
real.)

It is hoped that the present treatment will en-
courage experimental investigations of “indirect”
excitation of quasiparticles by light, and that both
the theoretical and applied aspects of such proce-
dures can be further explored and exploited.
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NONR-N00014-69-A-0200-6206, NSF Grant No. GP-
10943, and Air Force Office of Scientific Research Grant
No. AFOSR-610-67.
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The electronic structure of three group-1V elements is examined using a nonlocal pseudo-

potential determined primarily by physical considerations.

An ionic contribution to the poten-

tial is separated from the valence and covalent portion of the interaction, and is constructed
in an empty-core approximation, in terms of a set of angular-momentum—dependent core radii
R;. A modified version of the Penn dielectric function is used to determine the valence charge

potential.

Comparison with experiment results in substantial improvement over what has pre-

viously been achieved using the local empirical model (EPM).

I. INTRODUCTION

Over the past several years the pseudopotential
method has proven to be effective in describing the
electronic spectra of many covalently bonded semi-
conductors. In the early studies the Fourier co-
efficients of potential were treated as disposable
parameters and fitted to selected experimental
data.! The resulting analysis for a wide range of
experiment was sufficiently good that one could be
reasonably certain that no major revisions of the
electronic structure of the materials studied would
thereafter be necessary. Continuation of the original
scheme to a variety of compounds by Cohen and
collaborators? showed that the technique would work
with the same effectiveness as for the group-IV
materials. Further work by Saravia and the author
demonstrated that one could in addition successfully
calculate deformations of the electronic structure
associated with hydrostatic and uniaxial strains.

Several considerations make it worthwhile to
reexamine the electronic structure of the group-IV
materials. Perhaps the most compelling of these
is the central role played by these substances in the
Periodic Table. For example, given the electronic
structure of Ge, one would hope to be able to get
those of GaAs, ZnSe, CuBr, etc., as a series of
well-defined ever-increasing perturbations on that
of the central member of the sequence. Indeed,
within a pseudopotential framework such a start
has already been made by the author.* Using a
nearly self -consistent model, he found it possible
to construct potentials for several of the III-V
compounds without the use of any empirical inputs
other than those provided by the group-IV elements.
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Comparison was made between calculated and ex-
perimental values for 42 electronic transitions in
these materials. The over-all agreement was as
good as that achieved through either first-principles®
or purely empirical methods.® It is natural, there-
fore, to suppose that any improvements in the
pseudopotentials for the group-IV crystals will put
us in a position to do more definitive work in the
related AB compounds.

Examination of the current situation in Ge will
suffice to indicate the present state of the art re-
garding band-structure theory in semiconductors.
The original local version of the pseudopotential
was able to specify the important energy levels to
an accuracy of about 0.1 eV.! There were, how-
ever, a few levels that could only be located to
within something slightly better than 0.5 eV. Of
most concern at the time was the large optical-re-
flectivity peak near 4.3 eV. This appeared to be
0.4 eV too low in the theoretical spectrum.® " A
subsequent paper using the pseudopotential method
did not meet with any more success in improving
upon this problem.? Passing on to electronic
multiplet associated with the I'y; = I'y5 transition,
we note that considerable and intensive efforts
have been made recently which apparently finally
resolve this elusive transition. Donovan et al.®
have made an exhaustive examination of the leading
edge of their photoemission EDC’s and place the
center of mass of the multiplet slightly below
3.2 eV. The same authors, noting the lack of
polarization dependence of their transverse electro-
reflectance signal, definitively assign the 3. 2-eV
multiplet to this I" excitation. Careful piezo-optic
measurements also place the gap at the above



